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Abstract The rise of smart buildings, i.e. buildings equipped with latest technolo-
gy and built according to cutting-edge architectural advances, implies increased 
buildings’ complexity. For this reason, both new and retrofitted buildings are often 
susceptible to new and unforeseen faults, whose timely detection and servicing 
can significantly affect buildings performance. Many Fault Detection and Diagno-
sis (FDD) methods are data-driven, where the quality of collected data can signifi-
cantly affect the accuracy of results. However, data collection for FDD of  
buildings is a challenging task as needed data is not typically readily available.  
In this paper we focus on the data collection for FDD of smart buildings. This 
forms the motivation of this paper, i.e. to identify the challenges that relate to data 
collection processes for FDD of buildings, as well as propose workarounds of  
how to tackle the more important ones. Furthermore, we also look into how new 
technologies can be useful for this goal. 
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1 Introduction 

Smart buildings are slowly becoming reality. The definition of a smart building 
can be very broad and varied, and it can be stretched to include various aspects of 
buildings. We define smart buildings [1] as buildings that have been automated 
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and retrofitted to reduce their energy footprint and CO2 emissions without com-
promising the comfort of occupants [2]. In general, buildings can become smarter 
in two ways: 1) by using intelligent ICT solutions, or 2) by retrofitting the build-
ing using new and better materials or constructional solutions. Usually, to opti-
mize and better meet the preset performance targets, a combination of both ap-
proaches is deployed. In this context, in one of our previous works we emphasize 
the need of providing assessable solutions for smart buildings, as currently it is 
very difficult to predict the effect of any of these potential building improvements 
[3]. Due to the significant amount of technology involved in making buildings 
intelligent, as well as the use of new and better materials, which have, however, 
not yet stood the test of time; the likelihood of components and subsystems fail-
ing, sometimes with hard to predict consequences, has been increasing as well. 
This represents both a challenge and an opportunity to save on the energy-related 
costs. Correct and timely attention and intervention to faults in buildings presents 
a significant opportunity to save on energy related costs. The estimate is between 
15% and 30% of the energy consumption cost [4]. Due to the high complexity of 
buildings, most of the Fault detection and diagnosis (FDD) methods are data-
driven, or a hybrid between data-driven and model-driven methods. This implies 
that the data collection processes have a significant position for the accuracy of 
the methods. However, the data collection processes that target data relevant to 
diagnostics, as our experience has shown, are far from trivial, and it is a real chal-
lenge to gather it.  

In this paper we focus on the main data collection issues that relate to Fault De-
tection and Diagnostics (FDD) of smart buildings. The goal is to identify the main 
streams of data, and associated challenges with each of them. Furthermore, we 
also propose workarounds to some of them, as well as a vision on how new tech-
nologies can benefit these processes. We begin with a brief overview of existing 
FDD approaches for buildings. 

2 Fault Detection and Diagnostics for Smart Buildings 

As previously stated, Fault Detection and Diagnostics (FDD) is a burning issue for 
smart buildings. It has been shown that by deploying automated FDD, the opera-
tion cost of buildings can be significantly decreased [4]. These facts have trig-
gered a significant amount of research in the field of FDD for buildings. In the 
following we review the most significant findings in the problem area. 

A thorough overview of the FDD approaches for smart buildings is presented in 
[4] and, consequently, in [5]. The overview, although somewhat dated, is still the 
most recent thorough overview of FDD methods for building systems, and as such 
provides a broad classification of them. According to it, the main categorization of 
FDD methods is in Quantitative Model-Based, Qualitative Model-Based and Pro-
cess History Based methods. The main strengths of the quantitative methods is 
that they are based on sound physical models, however, their complexity is usually 
very large, and are often deemed as intractable. The high complexity implies that 
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very often, for FDD purposes, it is resorted to simplified models. The process 
history based methods are typically based on machine learning algorithms and to a 
large extent their quality depends on the quality of collected data. 

In a more recent, however less exhaustive overview of methods implemented in 
tools addressing the problem of diagnostics of buildings [6], authors also point out 
the main challenges associated with the process of detecting and isolating of er-
rors, summarized as follows: 

 Cost and ease of developing building models, 
 Scalability and portability of diagnostic solutions, 
 Inability to capture relevant data, and 
 Lack of knowledge about the data generated by building automation sys-

tems.  

To summarize, based on our findings and literature survey, diagnostics methods 
for buildings, in general, can be categorized as: Data-driven methods, Model-
driven methods and Hybrid method that combine the former two categories. Mod-
el-driven diagnosis methods for buildings are methods that have been developed 
solely on basis of physical models, where relations are strictly quantitatively de-
scribed. Data-driven diagnosis methods derive the relationships and predictive 
models based on historical and ongoing data collection. Hybrid methods contain 
elements from both model-driven and data-driven methods. In the following we 
highlight some of the more relevant methods in all three categories. 

Data driven diagnosis methods typically deploy machine learning algorithms, 
which based on collected data from energy consumption and faults, can detect  
and diagnose faults in real-time. One data-driven approach is presented by 
Namburu et al. [7], where the authors present an approach based on support vector 
machines, principal component analysis, and partial least squares to isolate faults. 
In one of the latest works in this problem domain by Fan et al. [8], a framework 
for knowledge discovery in Building Automation System data for the purpose of 
diagnosis is presented. A number of techniques are being deployed, among which 
genetic algorithms and quantitative association rules mining.  

Model-based diagnosis mostly relies on sound physical models that accurately 
describe and quantify the relations of control and output parameters of subsys-
tems. Typically, model-based approaches impose a number of simplifying as-
sumptions on the system, one of which is the deterministic behavior. O'Neill et al. 
present a full model-based real-time energy performance monitoring and diagnosis 
system, which has also been implemented and deployed [9]. The system has iden-
tified opportunities for saving ca. 30% of energy cost. However, it has also en-
countered a number of shortcomings, among others also that the effort needed to 
calibrate the model was significant. 

One hybrid method, that combines model-driven and data-driven approaches, is 
presented in the work by Du, Jin and Yang, in [10]. There, the authors describe a 
fault diagnosis approach of sensors for temperature, flow rate and pressure in vari-
able air volume (VAV) systems based on wavelet neural network, which is a com-
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bination of wavelet analysis and neural network. The authors claim that the com-
bination of both approaches has significantly improved the accuracy, as compared 
to each of the methods separately. With similar results, Li and Wen [11] have 
applied a combination of Principal Component Analysis (PCA) and Wavelet trans-
form (as pre-processing step to PCA) for fault detection in air handling units 
(AHU), which has yielded better results than applying the conventional PCA-
method. 

One significant aspect of fault diagnostics of buildings is the participation and 
feedback of occupants, also as part of the data collection processes. There is a 
significant amount of research that shows that occupants’ feedback can provide a 
meaningful clue to the diagnostics puzzle. In one of our previous works, we detail 
the effect that occupants can have on building’s performance and the opportunity 
that lies in them [12]. Goins and Moezzi demonstrate how an occupants’ com-
plaints handling process can contribute towards diagnosing performance problems 
[13]. There, a complaint is defined as “statement that a condition is unsatisfactory 
or could be improved”. The results of the study which confirm the links between 
the occupants’ comfort and building’s performance are certainly encouraging to 
utilize this kind of data, besides the standard automatically metered, to enhance 
the accuracy of the diagnostics processes. In the following section we identify and 
present the challenges in the data collection processes for FDD with respect to 
smart buildings.  

3 Data Collection for FDD of Smart Buildings 

Data collection is apparently a significant part in every research project on diag-
nostics of buildings. However, we were not able to find sufficient number of re-
sources on this specific topic. Among the few works that have been published, we 
have identified a slightly relevant Master thesis [14], where data collection for 
diagnostics in general has been studied. The thesis was aimed at minimizing the 
cost by facilitating automatic analysis of diagnostics data. The importance of the 
data collection for FDD of buildings stems from the complex nature of buildings, 
where relevant data is linked to both people and entities of technical nature. This 
brings a lot of challenges, as people are often difficult to cooperate with, so on 
many occasions non-intrusive data collection is the only option. Furthermore, 
unlike collection of data for forecasting behavior or performance of buildings, 
FDD is a problem that goes deeper, as its goal is to discover a cause for a certain 
failure or malfunction, which sometimes can be unseen before. This fact implies 
that both data and extensive meta-data is needed to capture and identify the 
“why?”. In [15], Schumann et al. identify three main streams of data in buildings: 

1) Metered data, obtained from meters and sensors, 
2) User feedback, obtained either through real-time feedback or surveys, and 
3) Expert knowledge, formalized in a manner that can be utilized by the se-

lected method, most often in a form of “if-then” rules 
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Common sources of automatically collected data in a building, as specified by the 
first stream, are: HVAC, Refrigeration, Power Meter, Utility, Lighting, Financial, 
Transaction, Occupancy, and Weather. More on the various types of sensing sys-
tems and their categorization can be found here [16]. However, in order to support 
the machine learning methods, there is a need of event logging of failures and 
other rare occurrences, which can only be properly collected by building’s support 
staff. Our experience has been that this would be very difficult to introduce, as 
building management staff would preferably spend their time on actually correct-
ing faults, as opposed to reporting about them. Nevertheless, this defines a vital 
stream of data for FDD that we term as: 

4) Event log, i.e. log of failures and other relevant events (e.g. reconfigura-
tions of systems or subsystems). 

To support the FDD processes, various alternative sources could also provide 
useful data, e.g. anonymized data on Internet usage of occupants, or the number of 
wireless units connected to an access point could both provide useful insights. For 
this reason, we identify a fifth stream of data as: 

5)  Implicit Data, i.e. data obtained from various implicitly relevant sources. 
In [17], Middelkoop in a chapter on Data Collection for Buildings’ Diagnostics 

has identifed a set of extensive guidelines for high resolution data collection. In 
the following we summarize a significant subset of those: 

 Detailed and structured logs must be made, implying that every historical 
event needs to be archived along with its meta-data, 

 Points must be properly named and tagged, 
 Data should be push-collected based on change of value (CoV), this is to 

decrease the burden of stress on both network and systems, 
 Points must be properly configured (Names, Units, CoV), meaning that all 

devices need to be configured with proper unites and scales, as well as how 
and when a CoV occurs, 

 Points must be verified, thus ensuring that point names and descriptions 
match,  

 Sensors must be calibrated, 
 Changes in hardware/configuration/calibrated must be logged and have 

immediate meta-data updates, this is especially important for diagnosing 
misconfigurations, 

 Meta-data updates must be additive and not replace old data, as all data is 
relevant for diagnosis. 

In the same book [17], in another chapter the following additional issues have 
been identified:  

 Conflicting and inconsistent tagging of data, 
 Fragmented data, due to using too short intervals that lead to memory 

overruns and premature termination, or due to improper and ineffective 
data management of file maintenance, and 

 Presence of noise and its elimination. 
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All of the afore-mentioned guidelines and problems identify some of the chal-
lenges that we have been facing as well. Apparently, some of these issues can be 
mended by using data analytics tools, but even these tools would certainly be more 
efficient if parts of the problems are tackled during the data collection processes. 
Additionally, we were able to also identify the following challenges: 
 Necessity of a formal assessment of quality of available data for FDD of 

buildings, and 
 Formal way of blending in expert knowledge for FDD purposes. 

 

Table 1 Relevant data streams for FDD of buildings and related challenges 

Data 
Strea

m 
Metered Data 

User Feed-
back 

Expert 
Knowledge 

Event Log 
Implicit 

Data 

C
ha

lle
ng

es
 - availability and 

collection of meta-
data 
- tagging of data 
- calibrating of 
sensors and meters 

- intrusive 
- incon-
sistent 
- subjective 

- intrusive 
- could be 
subjective 
- difficult to 
formalize 

- intrusive 
- difficult to 
determine 
how to de-
scribe events 

- easily avail-
able 
- accessibility 
and privacy 
issues 

 
To summarize, in Table 1, we present the five relevant data streams, along with 

the challenges associated with each of them. All of the data streams can be utilized 
to validate each other, as in theory they need to be consistent with each other. This 
validation alone can also signal anomalies, and often it is an important step in the 
FDD processes. In the following section we focus on the non-intrusive event log-
ging, as this has appeared to be a significant challenge for the FDD oriented data 
collection.  

4 Non-intrusive Event Logging as a Challenge 

One of the main challenges in FDD-related data collection, as we have pointed out 
in the previous Section 3, is the lack of historical data on failures and other rele-
vant events, as well as the lack of will for providing it. Our workaround for this 
issue is to simulate faults when the building is not in full use (the time period 
would depend on the type of building, i.e. for schools it could be summer vaca-
tion, or weekends for office buildings, etc.). This could certainly be helpful for a 
certain types of faults, i.e. misplaced or non-operating sensors. Furthermore, this 
approach would further trigger another question: “What is an optimal testing sce-
nario that would yield the most useful data?”, i.e. how to get most useful data with 
the lowest number of simulated faults in a shortest time. Apparently, this would 
depend on the nature of the faults and one would need to incorporate domain ex-
pert knowledge when developing the faults simulation scenario.  
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Another approach that we intend to attempt, although time-consuming, is to 
browse through purchase data for a given building. Typically, there we could also 
obtain partial data, even though slightly inaccurate, for purchasing of spare parts, 
as well as payments for repairs and maintenance. This should provide a better 
insight into causes of anomalies when no more adequate data is available. We are 
also going to investigate the options of having these processes automated. 

The problem of inadequate event logging we aim to also tackle by crowdsourc-
ing with a user-friendly mobile app that would require minimal effort to report, 
and would rely on an indoor positioning system. We envision it as a smart applica-
tion that would utilize historical data to guess what a user would be reporting 
based on a number of parameters, such as location, time of day, type of event in 
the room, etc. in order to minimize occupant’s effort to report. Apparently it 
would also need to deal with natural language processing for free-text or free-
speech. 

The combination of all of these approaches should provide useful data to the 
FDD methods. The bright side is that along with the new technologies for en-
hancement of buildings, there are also new technologies being developed that 
could also support the data collection processes. In the following section we pro-
vide an overview of this, as well as a vision of how these new technologies could 
be utilized for this purpose. We especially focus on how this data could be collect-
ed in a non-intrusive manner. 

5 New Technologies in Support of the Data Collection 
Processes 

One of the traditional approaches used to enhance reliability of engineering sys-
tems is the use of redundant resources to provide reliable and fault tolerant opera-
tions. This approach can be used to have more accurate collected information in 
smart buildings for more reliable diagnostics. For example, multiple redundant 
sensors can be installed to collect more data that can be used to compare readings 
and validate the accuracy of the current measurements and situations in smart 
buildings. In addition, they can be easily used to detect faults. However, this ap-
proach can significantly increase the cost of monitoring and control systems in 
smart buildings.   

New technologies such as the Internet of Things (IoT) [18] can effectively con-
tribute to solve some of the issues in the diagnostics processes of smart buildings. 
The IoT aims to interconnect our everyday life devices such as smartphones, smart 
watches, thermostats and sensors [19]. It provides them with information pro-
cessing capabilities to enable computers to sense, integrate, present, and react to 
all aspects of the physical world. The IoT can enable plug-n-play capability for 
FDD systems. This facilitates fast deployment of different devices for FDD sys-
tems in a cost-effective manner. In addition, this enabling mechanism can be used 
to deploy temporary systems with extra devices for fault detection and diagnostics 
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in existing smart buildings to conduct periodic checkups or to fix existing noticea-
ble problems [20].  

Personal mobile devices such as smartphones can provide extra capabilities in 
collecting data for diagnostics of smart buildings. Generally, smartphones can 
provide sensing data as users move in different areas. This approach of collecting 
sensing data is called participatory sensing [21]. Participatory sensing can be used 
to collect data about the environment, weather, and mobility as well as any other 
sensory information that collectively forms some knowledge of the current situa-
tion or configuration of a certain environment. It is also called people-centric  
sensing [22] as people play an important role with their personal devices and 
movement in collecting sensory information. Smartphones usually have multiple 
sensors such as a thermometer and light sensors as well as processing and com-
munication capabilities that can be utilized to collect current temperature, lighting, 
and occupancy levels. This collected data can be used to enhance the diagnostic 
process in smart buildings.    

Another new mobile device that can be used to collect data is the smart watch. 
Smart watches are wrist worn computers that run mobile operating systems and 
apps that can achieve multiple functionalities. They can have cameras and an array 
of sensors such as thermometers, accelerometers, altimeters, barometers, com-
passes, and GPS.  In addition, they can communicate with other devices using 
Bluetooth and Wi-Fi. Although the concept of smart watches has been around for 
long time, they took years for the technology to advance enough for cost-effective 
and suitable implementation [23]. Due to their computation, communication, and 
sensing capabilities they have been proposed for use in a number of applications 
such as mobile health [24, 25], monitoring human behavior [26], and systems 
monitoring [27]. One of the advantages of smart watches over smartphones is that 
they are usually continuously attached to the human body. This provides more 
accurate sensing capabilities within the areas where the building’s occupants are 
usually available.  

With the utilization of smartphones and smart watches in smart buildings, more 
accurate virtual sensors [28] can be developed for diagnostic processes. Virtual 
sensors are logical sensors that provide economical alternatives to costly physical 
sensors. A virtual sensing system uses information available from other devices 
such as fixed physical sensors, smartphones, and smart watches to calculate an 
estimate of the quantity of interest. In this regard, there are two approaches of 
virtual sensing: analytical virtual sensing and empirical virtual sensing [29]. The 
analytical virtual sensing approach is based on the calculation of the measurement 
estimate using approximations of the physical laws including those that involve 
the distances of the used physical devices. The empirical virtual sensing approach 
is based on the calculations of the measurement estimate using the available cur-
rent and previous measurements. Virtual sensors can provide low-cost sensing 
capabilities while expanding the data collection process for more accurate smart 
buildings diagnostics.  

As more data is collected from smart buildings for analysis, storing and pro-
cessing this data will require huge resources as well as advanced software that 
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implements innovative algorithms for accurate fault diagnostics. This can be very 
costly for smart buildings owners. Cloud computing can provide a scalable and 
cost-effective platform for such needs [30]. Cloud computing is an emerging 
commercial IT infrastructure model that offers to eliminate the need for clients to 
maintain in-house high-cost hardware, software, and network infrastructures [31]. 
It also reduces, or even eliminates, the high-cost of recruiting technical profes-
sionals to support these infrastructures and operate the in-house IT solutions. 
Smart buildings can use different services that can be provided by cloud service 
providers such as data storage services, processing services, and fault diagnostics 
services. One of the advantages of this model is that as the cloud service provider 
can collect more data from multiple smart buildings; it can enhance the fault de-
tection and diagnostic processes. In addition, this will enable cloud service pro-
viders to implement automated knowledge systems for smart building diagnostics 
[8] and other advanced mechanism such as fault detection analysis [32] for the 
benefit of the clients, the smart buildings. 

6 Conclusions 

In this paper we have explored the issue of data collection for diagnostics of smart 
buildings. This is a matter that has a significant place in every research done on 
the FDD topic, yet it is still flawed and poses a lot of questions. For these reasons, 
we aimed to summarize the challenges that accompany the data collection pro-
cesses for FDD of smart buildings. We also hope that this would provide a basis 
for a future platform for joint efforts in overcoming these issues and, hopefully, 
sharing data and knowledge to support the research efforts in this domain. 
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